CRV Review: 2-4

- Concept of PDF
- Formal definition of a pdf
- How to create a continuous random variable in python
- Plot Histograms
- Plot PDFs

Common Trap

- $f_X(x)$ does not yield a probability $\circ \int_a^b f_X(x) dx$ does
 - x may be anything (\mathbb{R})
 - thus, $f_X(x)$ may be > 1

Some Common Probability Density Functions

Common *pdf*s: Normal(μ , σ^2)

Common *pdf*s: Normal(μ , σ^2)

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

 μ : mean (or "center")

= expectation

σ²: variance, σ: standard deviation

Common *pdf*s: Normal(μ , σ^2)

Common *pdf*s: Normal(μ , σ^2)

 $X \sim Normal(\mu, \sigma^2)$, examples:

- height
- intelligence/ability
- measurement error
- averages (or sum) of lots of random variables

Common pdfs: Normal(0, 1) ("standard normal")

How to "standardize" any normal distribution:

- subtract the mean, μ (aka "mean centering")
- divide by the standard deviation, $\boldsymbol{\sigma}$

 $z = (x - \mu) / \sigma$, (aka "z score")

Common *pdf*s: Normal(0, 1) $P(-1 \le Z \le 1) \approx .68, \quad P(-2 \le Z \le 2) \approx .95, \quad P(-3 \le Z \le 3) \approx .99$ within $1 \cdot \sigma \approx 68\%$ Normal PDF within $2 \cdot \sigma \approx 95\%$ within $3 \cdot \sigma \approx 99\%$ 68%95% 99% 2 σ -3σ -2σ 2σ $-\sigma$ 3σ

Credit: MIT Open Courseware: Probability and Statistics

Common *pdf*s: Uniform(a, b)

$$f_X(x) = \begin{cases} \frac{1}{b-a} & \text{for } x \in [a, b] \\ 0 & \text{otherwise} \end{cases}$$

83

Common *pdf*s: Uniform(a, b)

$$f_X(x) \ = \begin{cases} \frac{1}{b-a} & \text{for } x \in [a,b] \\ 0 & \text{otherwise} \end{cases}$$

X ~ Uniform(a, b), examples:

- spinner in a game
- random number generator
- analog to digital rounding error

Common *pdf*s: Exponential(λ)

$$f_X(x) = \lambda e^{-\lambda x}, x > 0$$

 λ : rate or inverse scale

$$eta$$
: scale ($\lambda=rac{1}{eta}$)

Common *pdf*s: Exponential(λ)

 $X \sim Exp(\lambda)$, examples:

- lifetime of electronics
- waiting times between rare events (e.g. waiting for a taxi)
- recurrence of words across documents

How to decide which pdf is best for my data?

Look at a *non-parametric* curve estimate: (If you have lots of data)

- Histogram
- Kernel Density Estimator

How to decide which pdf is best for my data?

Look at a *non-parametric* curve estimate: (If you have lots of data)

- Histogram
- Kernel Density Estimator

$$\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K\left(\frac{x - X_i}{h}\right)$$

K: kernel function, *h:* bandwidth

(for every data point, draw *K* and add to density)

How to decide which pdf is best for my data?

Look at a *non-parametric* curve estimate: (If you have lots of data)

- Histogram
- Kernel Density Estimator

$$\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K\left(\frac{x - X_i}{h}\right)$$

K: kernel function, *h:* bandwidth

(for every data point, draw K and add to density)